Technical Procedure for Physical Match Analysis

1.0 Purpose – This procedure shall be followed for the examination of items of evidence that may have broken edges that can be joined together, demonstrating a physical match.

2.0 Scope – This procedure applies to all physical match cases in the Trace Evidence Section.

3.0 Definitions – N/A

4.0 Equipment, Materials, and Reagents

- Camera
- Stereomicroscope
- Casting media

5.0 Procedure

5.1 Analytical Approach

5.1.1 General Guidelines

5.1.1.1 Items submitted for physical match analysis include a wide variety of materials. The Forensic Scientist Manager shall assign a Forensic Scientist to each physical match case based on the type of examination requested and the instrumentation and expertise required to perform the analysis.

5.1.1.2 When pieces can be fit together, the Forensic Scientist can say with certainty that the matching pieces were at one time a single unit.

5.1.1.3 For items in which a physical match is not found, other examinations or comparisons may be performed.

5.1.2 Visually examine each questioned item of evidence to determine its class characteristics (e.g., size, color, pattern, dimension, composition, etc.) and compare the questioned items for similarities.

5.1.3 Orient the pieces and determine if they have broken/fractured edges that physically fit together.

5.1.3.1 Fabric matching involves examining the general size and shape, weave/knit type, fiber type and twist, colors and patterns, long versus short threads, unusual stretching or contours, stains, damaged areas and stitched edges or selvedges.

5.1.3.1.1 When matching flexible materials (e.g., fabric, tape and some plastics), care must be taken to account for edge rolling, stretching, and twisting.
5.1.3.2 Matching of rigid materials involves examining the general size and shape, colors and patterns, edges and contours, cracks, breaks and other damaged areas.

5.1.4 If the edges on the pieces physically fit together, observe all orientations of the physical match for specific, individual characteristics (e.g., scratches, striations, inclusions, stains, defects, hackle marks, etc.) that traverse the broken, cut or torn edges.

5.1.4.1 If comparisons at the microscopic level are necessary, a stereomicroscope, comparison microscope and/or SEM shall be used.

5.1.4.2 Castings of samples may aid in the comparison. Any suitable casting media may be used, such as mikrosil.

5.1.5 Photographs shall be taken of all physical matches.

5.1.6 If sufficient individual characteristics are present, it can be concluded that the items physically match. All reported identifications shall be verified by a second qualified Forensic Scientist who will conduct the verification from the original evidence. If the initial Forensic Scientist has reconstructed the material for the fracture match, it may be left assembled for the verifying Forensic Scientist. A Verification Review shall be completed in FA by the verifying Forensic Scientist.

5.2 Guidelines for Physical Match Analysis Result Statements

5.2.1 The reports shall read as listed below. The wording of the results shall accurately describe the evidence.

5.2.2 Positive

5.2.2.1 Both class and individual characteristics match and the pieces fit together.

5.2.2.1.1 Example: Item A has edges that physically match the edges on Item B. Therefore, these pieces were once joined to form a single item.

5.2.3 Inconclusive

5.2.3.1 Class characteristics match, but there is very limited detail in the break. No additional testing can be performed.

5.2.3.1.1 Example: Due to ___ (limiting factor), the physical match analysis of Items A and B was inconclusive.

5.2.4 Negative

5.2.4.1 Class characteristics do not match.
5.2.4.1.1 Example: Items A and B were found to have different __ (e.g., manufacturing characteristics); therefore no physical match is possible.

5.2.4.2 Class characteristics match, but the pieces do not fit together.

5.2.4.2.1 Example: No physical match was found between Items A and B.

5.2.4.2.2 Evidence will go on for additional testing if possible (e.g., paint analysis).

5.3 Standards and Controls – N/A

5.4 Calibrations – N/A

5.5 Maintenance – N/A

5.6 Sampling and Sample Selection

5.6.1 No sampling is performed. When sample selection occurs, it shall be based on the Forensic Scientist’s training and experience.

5.6.2 All pieces with class characteristics that are consistent with the questioned item shall be evaluated for potential physical matches.

5.6.3 Once a physical match has been made conclusively linking two objects, scenes, etc., no additional pieces originating from those same areas need to be further evaluated for additional physical matches.

5.7 Calculations – N/A

5.8 Uncertainty of Measurement – N/A

6.0 Limitations – N/A

7.0 Safety – Broken edges can be sharp. Care shall be exercised during this technical procedure.

8.0 References

8.1 ASTM / SWG Guidelines


8.2 Books


### 8.3 Journals


### 9.0 Records – N/A

### 10.0 Attachments – N/A
<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Version Number</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/17/2012</td>
<td>1</td>
<td>Original ISO Document</td>
</tr>
</tbody>
</table>

All copies of this document are uncontrolled when printed.