SCREENING AND RECOVERY TECHNIQUES

- A. Post-blast Evidence
 - 1. The evidence container is opened and any distinctive odors are noted.
 - 2. A macroscopic (visual) examination is performed as follows:
 - a. General appearance of the debris is noted. (e.g. indications of low or high explosive)
 - b. Locate obvious fragments/components of the bomb such as pipe or container fragments, blasting cap artifacts, leg wires, wrappers, fuses, timing devices, batteries, etc.
 - c. Remove and isolate unconsumed explosives, noting the location where it was found.
 - d. Characteristics and location of residues are noted. (e.g. white crystalline material present).
 - e. Remove any additional debris that is unidentifiable.
 - 3. A microscopic (stereomicroscope) examination of the fragment surfaces and debris is performed for the following:
 - a. Remove and isolate any unconsumed explosive material.
 - b. Note locations of explosive residue.
 - c. Characterize any microscopic blast effects. (e.g. pitting, shearing or scorching)
 - d. Use sieves the help isolate unconsumed explosive.
 - e. Remove and isolate any additional identifiable debris.
 - 4. Physical characterization of suspected explosive particles
 - a. Black Powder or Pyrodex
 - i. Morphology: Black Powder (planed lumps) Pyrodex (rough spheres)
 - ii. Homogeneity: Black Powder (homogenous) Pyrodex (non-homogenous)
 - iii. Presence of glazing
 - iv. Grade Classification (compare with standards)
 - a. Black powder has grades of F, FF, FFF, FFFF.
 - b. Pyrodex has grades P(pistol), RS(rifle/shotgun), CTG(cartridge).
 - v. Ignition characteristics
 - b. Flash Powders
 - i. Note general appearance
 - ii. Note color
 - iii. Note the presence of metal (Al or Mg)
 - iv. Examine for the presence of crystalline inclusions.
 - a. Potassium Chlorate or Potassium Perchlorate
 - b. Sulfur
 - v. Examine for presence of sawdust
 - vi. Check for homogeneity of particles.
 - vii. Ignition characteristics (particularly flame color)
 - c. Smokeless Powders
 - i. Morphology
 - a. tube (perforated/nonperforated)
 - b. disk (perforated/nonperforated)

- c. ball
- d. flattened ball
- e. rhomboid
- f. other
- ii. Presence of glazing
- iii. Note the color
- iv. Note the presence of markers (e.g. red or blue dot)
- v. Ignition characteristics.
- d. Chlorate/Sugar Mixtures
 - i. Note the general appearance
 - ii. Check for homogeneity
 - iii. Note the ignition characteristics
- 5. Chemical characterization of suspected explosive particles.
 - a. Black Powder or Pyrodex
 - i. Separation is performed by water extraction and filtration
 - ii. Components to be identified

Black Powder

- Potassium Nitrate (75%) .
- Charcoal (15%) .
- Sulfur (10%) .

Pyrodex

- Potassium Nitrate (45%)
- Potassium Perchlorate (19%)
- Charcoal (9%) .
- Sulfur (6%)
- Cyanoguanidine (6%)
- Sodium Benzoate (11%)
- Dextrine (4%)
- Wax + Graphite (-)

Common solid combustion products:

Black Powder

- $K_2SO_4 K_2CO_3$ •
- $KHSO_4 K_2S$ •
- KSCN KHSO
- S KNO₃ KNO₂ •
- $KHCO_3 K_2S_2O_3$
- C & Assoc. Ions

Pyrodex

- $K_2SO_4 K_2CO_3$
- K₂S S KCl
- KHSO3 KHSO
- KNO₃ KClO₄
 - KHCO₃ KNO₂
- K₂S₂O₃ C & Assoc. Ions
- Cyanoguanidine
- Sodium Benzoate

iii. Methods employed for characterization

- a. Polarizing Light Microscopy
- b. Spot tests (e.g. anions, cations)
- c. FTIR (e.g. KNO₃, KClO₄, Cyanoguanidine, Sodium Benzoate)
- d. TLC
- e. XRD
- f. SEM/EDAX

g. CE

- b. Flash Powders
 - i. Separation is performed by water extraction and filtration.
 - ii. Components to be identified.
 - a. Flash Powder
 - i. Chemical Composition
 - a. Potassium Chlorate or Potassium Perchlorate (40-60%)
 - b. Aluminum (20-30%)
 - c. Sulfur (10-30%)
 - ii. Common Solid Combustion Products
 - a. K₂SO₄ KClO₄ or KClO₃ KHSO₃ KCl
 - b. KHSO₃ Al₂O₃ AlCl₃ Al₂SO₄
 - c. KAl(SO₄)₂ Al & Assoc. Ions
 - b. "Military Flash Powder"
 - i. Chemical Composition
 - a. Aluminum (40%)
 - b. Potassium Perchlorate (30%)
 - c. Ba(NO₃)₂ (30%)
 - ii. Common Solid Combustion Products
 - a. KClO₄ KCl Ba₂SO₄ Al Al₂O₃
 - b. $Ba(NO_3)_2$ KNO_3 $BaNO_2$ $AlCl_3$ & Assoc. Ions
 - c. <u>"M-115"</u>
 - i. Chemical Composition
 - a. Magnesium (34%)
 - b. Aluminum (26%)
 - c. Potassium Perchlorate (40%)
 - ii. Common Solid Combustion Products
 - a. KCl Al_2O_3 KClO₄ Mg₂O₃ & Assoc. Ions
 - d. <u>"M-117</u>"
 - i. Chemical Composition
 - a. Magnesium (17%)
 - b. Antimony Sulfide (33%)
 - c. Potassium Perchlorate (50%)
 - ii. Common Solid Combustion Products
 - a. KCl Mg_2O_3 Sb_2O_3 KClO₄ & Assoc. Ions
 - e. <u>"M-119"</u>
 - i. Chemical Composition
 - a. Potassium Perchlorate (73%)
 - b. Gallic Acid (24%)
 - c. Red Gum (3%)
 - ii. Common Solid Combustion Product
 - a. KCl
 - iii. Methods employed for characterization:
 - a. Polarizing Light Microscopy
 - b. Spot tests (e.g. anions, cations)

- c. FTIR (e.g. KNO₃, KClO₄)
- d. TLC
- e. XRD
- f. SEM/EDAX
- g. CE
- c. Smokeless Powders
 - i. Separation is performed by acetone extraction
 - ii. Components to be identified
 - a. Chemical Composition
 - i. Single-base: Nitrocellulose (85-100%)
 - ii. Double-base: Nitrocellulose (50-80%) & Nitroglycerin (15-45%)
 - b. Common solid combustion products
 - i. Single-based
 - a. Nitrocellulose, (K₂SO₄ KNO₂ weak)
 - ii. Double-based
 - a. Nitrocellulose, (K₂SO₄ KNO₂ weak)
 - b. Nitroglycerin
 - iii. Methods employed for characterization:
 - a. Polarizing Light Microscopy
 - b. Spot tests (e.g. anions, cations)
 - c. FTIR (e.g. KNO₃, KClO₄)
 - d. TLC
- d. Sugar / Chlorate Mixtures
 - i. Separation is performed by water extraction.
 - ii. Components to be identified
 - a. Chemical composition:
 - i. Sodium Chlorate (67%)
 - ii. Sucrose (33%)
 - b. Common solid combustion products:
 - i. NaCl NaClO₃ Sucrose & Assoc. Ions
 - iii. Methods employed for characterization:
 - a. Polarizing Light Microscopy
 - b. Spot tests (e.g. anions, cations)
 - c. FTIR (e.g. KNO₃, KClO₄)
 - d. TLC
 - e. XRD
 - f. SEM/EDAX
 - g. CE