Technical Procedure for 1,2-Indanedione-zinc

1.0 Purpose - This procedure describes how to make the 1,2-Indanedione-zinc solution and apply it to items of evidence.

2.0 Scope - This procedure applies to porous items of evidence that are to be examined for the presence of latent prints. 1,2-Indanedione-zinc reacts with amino acids present in fingerprint residue and produces fluorescent impressions when the reaction is complete.

3.0 Definitions – N/A

4.0 Equipment, Materials and Reagents

4.1 Equipment and Materials

- Laboratory coat and gloves
- Face shield visor and/or safety goggles
- Magnetic stirrer, magnetic follower, and magnetic retriever
- Glass beakers
- Graduated cylinders
- Dark, shatter-proof container
- Weigh boats
- Forceps
- Fume hood
- Glass tray, paint brush, or aerosol sprayer (for application)
- Camera
- Dust or mist respirator (for application outside of fume hood)

4.2 Reagents

- 1,2-Indanedione powder (0.8 g)
- Ethyl acetate (91 mL)
- Glacial acetic acid (10 mL)
- Zinc chloride powder (0.4 g)
- Ethanol (10 mL)
- HFE-7100 (1010 mL)

5.0 Procedure

5.1 Chemical Preparation

5.1.1 Zinc Chloride Stock
5.1.1.1 Place 0.4 gram of zinc chloride powder and a magnetic follower into a 500 mL beaker.

5.1.1.2 Add 10 mL of ethanol to the beaker and stir until the zinc chloride powder has completely dissolved. Do not use heat.

5.1.1.3 Add 1 mL of ethyl acetate while stirring.

5.1.1.4 Add 190 mL of HFE-7100 to the mixture. Continue stirring for an additional 5 minutes.

5.1.1.5 Transfer the concentrate solution to a clean, dark, shatterproof container.

5.1.2 1,2-Indanedione-Zinc Solution

5.1.2.1 Place 0.8 gram of 1,2-indanedione powder and a magnetic follower into a 1500 mL beaker.

5.1.2.2 Add 90 mL of ethyl acetate to the beaker and stir. Do not use heat.

5.1.2.3 Add 10 mL of glacial acetic acid and add to the solution while stirring.

5.1.2.4 Add 80 mL of the zinc chloride stock to the solution while stirring.

5.1.2.5 Add 820 mL of HFE-7100 to the solution. Continue stirring until the 1,2-indanedione powder has completely dissolved.

5.1.2.6 Transfer the resulting working solution to a clean, dark, shatterproof container.

5.2 Processing Procedures

5.2.1 Chemical Application

5.2.1.1 The Forensic Scientist shall produce a self-made test print to be processed concurrently with items of evidence (see Section Technical Procedure for Ensuring Quality Control).

5.2.1.2 Dipping Method – Completely submerge the item in the working solution for 5 to 10 seconds.

5.2.1.3 Brush Method – Dip the brush into the working solution and brush directly onto the item.

5.2.1.4 Spray Method – Spray the item with the working solution to completely saturate the item.

5.2.1.5 Allow the item to dry completely prior to proceeding.
5.2.2 Latent impressions will develop over time at room temperature. Several methods are available to enhance the development process.

5.2.2.1 Plastic Bag – Place the item in a sealed plastic bag until latent impressions develop.

5.2.2.2 Steam Iron – The iron is used to provide heat and moisture to the item. Hold the iron above the item and steam it, taking care to avoid contact between the item and the iron.

5.2.2.3 Microwave – Heat a tray or beaker of water in the microwave in order to produce steam. Place the item in the microwave for approximately 5 minutes, or until impressions develop. Do not turn on the microwave with the evidence inside and do not allow the evidence to contact the hot water bath.

5.2.2.4 Humidity Chamber – Large items may be placed in a humidity chamber for approximately 4 to 5 hours. The chamber shall be checked periodically to ensure adequate moisture is present.

5.2.3 Preservation of Developed Impressions – Preserve the developed impressions through photography (see photographic equipment procedures) and/or by electronic recording (see Section Image Processing Procedure).

5.3 Standards and Controls – N/A

5.4 Calibration – N/A

5.5 Sampling – N/A

5.6 Calculations – N/A

5.7 Uncertainty of Measurement – N/A

6.0 Limitations

6.1 Latent prints treated with 1, 2-indanedione-zinc will fluoresce yellow under an alternate light source. Background fluorescence shall be considered when using this chemical.

6.2 Zinc chloride stock and 1,2-indanedione-zinc solutions shall be stored in dark, shatter-proof containers until needed.

6.3 Shelf Life

6.3.1 Zinc chloride stock - 6 months.
6.3.2 1,2-indanedione-zinc Solution - 3 months.

7.0 Safety

7.1 The process shall always be used in a fume hood as the fumes may cause some irritation when in contact with the eyes or skin and may be harmful if inhaled or ingested.

7.2 Protective goggles, gloves, and lab coats shall be worn at all times during processing.

7.3 Glacial acetic acid and ethyl alcohol are extremely flammable and shall be handled properly.

8.0 References

- Wilkinson, D., Mackenzie, E., Leech, C., Mayowski, D. The Results from a Canadian National Field Trial Comparing Two Formulations of 1,8-diazafluoren-9-one (DFO) with 1,2-indanedione. *Ident Canada*. Vol. 26, No. 2. 2003, pp. 8 – 18.

9.0 Records – N/A

10.0 Attachments – N/A

Revision History

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Version Number</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/29/2014</td>
<td>1</td>
<td>Original Document</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>